

Welcome to nbchkr’s documentation!

A lightweight solution to mark/grade/check notebook assignments.

This documentation is in four parts:

	A tutorial: a step by step walk through of writing an assignment, using
nbchkr to create a version to be released and checking submissions.

	A how to guide: a collection of short and to the point instructions for
carrying out specific tasks.

	A series of explanations: some background information on nbchkr.

	A reference section: includes bibliography, a changelog and viewable source code.

Contents:

	Tutorial
	Installing nbchkr

	Writing an assignment

	Releasing an assignment

	Releasing solutions

	Checking student assignments and generating feedback

	How to:
	install

	write a source assignment

	release an assignment

	solve an assignment

	check a submission

	handle a submission in the wrong format

	contribute

	release

	Explanation
	why use nbchkr?

	why use automated checking?

	Reference
	Bibliography

	Changelog

	Source code

Tutorial

This tutorial will take you three the main steps of using nbchkr:

	Write an assignment with solutions and checks.

	Create a release notebook with the solutions and checks removed.

	For a collection of submissions: check the work and create individual feedback.

Installing nbchkr

To install the latest release of nbchkr, at a command line interface run
the following command:

$ python -m pip install nbchkr

Writing an assignment

Initial setup

Open a Jupyter notebook, we will choose to name it main.ipynb (but the
name is not important).

[image: ../_images/create_new_notebook.png]
On the Jupyter toolbar, click on View and then Cell Toolbar and
then Tags.

[image: ../_images/add_tags.png]

Attention

Depending on your version of Jupyter the screenshot might not look the same.

This should make the native tag menu available to you on every cell in your
Jupyter notebook.

[image: ../_images/seeing_the_tags_bar.png]
We can now start writing our assignment.

Writing text for a question

Let us write a markdown cell with some instructions and a question that we want
to ask our students:

Class assignment

We will use this assignment to solidify our understanding of using Python to
carry out some numerical operations and also write functions.

Use this notebook to write your answers in the cells as instructed, do your
best not to delete any of the cells that are already there.

Question one.

Use python to obtain the remainder when dividing 21 by 5.

\\[21 \mod 5\\]

Be sure to indicate that that cell is a markdown cell and not the usual
code cell.

[image: ../_images/changing_the_cell_type.png]
Once you run that cell it should like like the following:

[image: ../_images/seeing_the_rendered_cell.png]

Writing the answer to a question

In the next cell we will write down the expected answer but also include a
delimiters for what should not be shown to students:

BEGIN SOLUTION
21 % 5
END SOLUTION

We can run that cell if we want to keep an eye on the answer.

An important step at this stage is to let nbchkr know that this is an
answer cell, we do this by adding answer:q1 to tags.

Everything should now look like the following:

[image: ../_images/seeing_the_answer_tag.png]

Writing checks for the answer

We will now write a check for the answer, that nbchkr uses to be able to give
feedback to a student. We do this using nbchkr.checks.check_variable_has_expected_property:

import nbchkr.checks

q1_answer = _
feedback_string = "Your operation did not return an integer which is expected"

def check_variable_is_an_integer(variable):
 return type(variable) is int

variable_string = "q1_answer"

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_variable_is_an_integer,
)

We should add a description to our check which will then appear in the
feedback and the summary data file.
We do this by adding the tag: description:integer-answer.

We will also add a tag: score:1 to this cell.

As well as checking that the answer is an integer let us check the actual answer
by creating a new cell and writing:

feedback_string = "The expected answer is 1 because 21 = 5 * 3 + 1"

def check_value_is_correct(variable):
 return variable == 1

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_value_is_correct,
)

This will be worth 3 points so let us add the tag: score:3.

We can choose to add a description to our check which will then appear in the
feedback. We do this by adding the tag: description:correct-answer.

Writing another question

Let us write a second question that asks students to write a function:

Question two.

Write a python function `get_remainder(m, n)` that returns the remainder
the remainder when dividing \\(m\\) by \\(n\\).

\\[m \mod n\\]

Writing the answer

As before we write an answer in a cell below:

def get_remainder(m, n):
 ### BEGIN SOLUTION
 """
 This function returns the remainder of m when dividing by n
 """
 return m % n
 ### END SOLUTION

Including checks

We will now add some cells to check the answer.

First let us make sure there is a docstring:

feedback_string = """You did not include a docstring. This is important to help document your code.

It is done using triple quotation marks. For example:

def get_remainder(m, n):
 \"\"\"
 This function returns the remainder of m when dividing by n
 \"\"\"
 ...

Using that it's possible to access the docstring,
one way to do this is to type: `get_remainder?`
(which only works in Jupyter) or help(get_remainder).

We can also comment code using `#` but this is completely
ignored by Python so cannot be accessed in the same way.

"""

variable_string = "get_remainder"

def check_function_has_docstring(variable):
 return variable.__doc__ is not None

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_function_has_docstring,
)

Whilst we’ve decided to write quite a lot of feedback with details about writing
docstrings we are only going to score this part of the answer 1 point so we use
the tag: score:1.

We will add the description tag: description:presence-of-docstring.

We will also include specific checks for the actual answer:

feedback_string = "Your function does not give the correct values"

def check_function_gives_correct_value(variable, m, n, expected_value):
 return variable(m, n) == expected_value

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_function_gives_correct_value,
 m=5,
 n=3,
 expected_value=2,
)
nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_function_gives_correct_value,
 m=43,
 n=21,
 expected_value=1,
)
nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_function_gives_correct_value,
 m=1000,
 n=10,
 expected_value=0,
)

For this we will use the description tag: description:correct-answer.

IF you would like to see a final version of this notebook
you can find it here.

Releasing an assignment

Now we can take that source notebook and create an assignment that can be given
to students. To do this, we use the command line tool that comes with nbchkr:

$ nbchkr release --source main.ipynb --output assignment.ipynb

This creates assignment.ipynb with
the answers and checks removed.

Releasing solutions

If we want to create a model solution we can.
To do this, we use the command line tool that comes with nbchkr:

$ nbchkr solve --source main.ipynb --output solution.ipynb

This creates solution.ipynb with
the checks removed.

Checking student assignments and generating feedback

Assuming we have a class of 3 students who each submitted a notebook with the
following naming convention:

assignment_<student_number>.ipynb

These notebooks are all put in a submissions/ directory:

	assignment_01.ipynb

	assignment_02.ipynb

	assignment_03.ipynb

To check them and generate the feedback we again use the nbchkr command
line tool:

$ nbchkr check --source main.ipynb --submitted "submissions/*.ipynb" --feedback-suffix -feedback.md --output data.csv

This has gone through and checked each notebook, you can see the output here:

The summary results

	
	Submission filepath

	Score

	Maximum score

	Tags match

	Integer answer

	Correct answer

	Presence of docstring

	Run time

	0

	submissions/assignment_01.ipynb

	2

	11

	True

	True

	False

	True

	3.520920753479004

	1

	submissions/assignment_02.ipynb

	10

	11

	True

	True

	True

	False

	1.2404108047485352

	2

	submissions/assignment_03.ipynb

	4

	11

	False

	True

	False

	False

	1.5148279666900635

We see that assignment_03.ipynb has a False flag under the
Tags Match heading: this is because the student must have deleted one of
the cells with a required tag. nbchkr does its best to check them anyway
but this is a notebook that we should check manually.

In the submissions directory, 3 markdown files have been written with feedback
to the students:

assignment_01.ipynb-feedback.md:

answer:q1

Integer answer

1 / 1

Correct answer

Your variable q1_answer has value 3.
 The expected answer is 1 because 21 = 5 * 3 + 1

0 / 3

answer:q2

Presence of docstring

1 / 1

Correct answer

Your variable get_remainder has value <function get_remainder at 0x121791580>.
 Your function does not give the correct values

0 / 6

assignment_02.ipynb-feedback.md:

answer:q1

Integer answer

1 / 1

Correct answer

3 / 3

answer:q2

Presence of docstring

Your variable get_remainder has value <function get_remainder at 0x1071934c0>.
 You did not include a docstring. This is important to help document your code.

It is done using triple quotation marks. For example:

def get_remainder(m, n):
 """
 This function returns the remainder of m when dividing by n
 """
 ...

Using that it's possible to access the docstring,
one way to do this is to type: `get_remainder?`
(which only works in Jupyter) or help(get_remainder).

We can also comment code using `#` but this is completely
ignored by Python so cannot be accessed in the same way.

0 / 1

Correct answer

6 / 6

assignment_03.ipynb-feedback.md:

answer:q1

Integer answer

1 / 1

Correct answer

3 / 3

answer:q2

Presence of docstring

The variable get_remainder does not exist.

0 / 1

Correct answer

The variable get_remainder does not exist.

0 / 6

How to:

This section of the documentation is aimed at those who want to know how to
carry out a specific task with nbchkr.

How to:

Contents:

	install

	write a source assignment
	Write a question

	Write an answer

	Write a check

	release an assignment
	Using the command line tool

	Using nbchkr as a library

	solve an assignment
	Using the command line tool

	Using nbchkr as a library

	check a submission
	Using the command line tool

	Using nbchkr as a library

	handle a submission in the wrong format

	contribute
	Installing a development version

	Run tests

	Style formatting

	Build the documentation

	Git branching

	release

install

To install the latest release of nbchkr:

$ python -m pip install nbchkr

write a source assignment

Writing an assignment is done by writing a Jupyter notebook and using tags:

Write a question

Use markdown cells in Jupyter to write your question.

Write an answer

In a code cell write the code snippet that is the answer to the
question:

BEGIN SOLUTION
<code>
END SOLUTION

The ### BEGIN SOLUTION and ### END SOLUTION delimiters are
necessary. It is possible to pass your own set of delimiters to nbchkr
(see further documentation for that).

Add the answer:<uique_label> tag to the cell.

Write a check

In a code cell write statements to check any given property
of a variable.
To do this define a property_check function that takes a variable
variable. Pass this property_check function as well as a
feedback_string and the name of a variable to check the property of
variable_string to nbchkr.checks.check_variable_has_expected_property

Note that it is possible to refer to the output of a previous cell using
_.

Here is a check for the previous output being even:

output = _

import nbchkr.checks
variable_string = "output"
feedback_string = "Your output is not even"

def check_even(variable):
 return variable % 2 == 0

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_even,
)

Add the score:<integer> tag to the cell. The <integer> is the
value associated with this specific check. If the <condition> is met
then the <integer> value will be added to the total score of a student.

Add the description:<string> tag to the cell.
This will add the <string> to the feedback for that specific check. Note
that spaces should be replaced with - which will automatically be
replaced in the feedback. For example: description:correct-answer will
appear as ### Correct answer in the feedback.

Note that it is possible to write multiple checks for a given answer. This can
be done so as to programmatically offer varying levels of feedback for specific
parts of the task.

Property checks with arguments

Note that it is also possible to write property check functions that take
keyword arguments and pass these to
nbchkr.checks.check_variable_has_expected_property. For example:

output = _

import nbchkr.checks
variable_string = "output"
feedback_string = "Your output is not even"

def check_divisibiliy_by_m(variable, m):
 return variable % m == 0

nbchkr.checks.check_variable_has_expected_property(
 variable_string=variable_string,
 feedback_string=feedback_string,
 property_check=check_divisibiliy_by_m,
 m=2,
)

release an assignment

You can release an assignment in 1 or 2 ways:

	Using the command line tool.

	Using nbchkr as a library.

Using the command line tool

Given a source assignment main.ipynb:

$ nbchkr release --source main.ipynb --output assignment.ipynb

This creates assignment.ipynb with relevant cells removed which can
then be distributed to students.

Using nbchkr as a library

All of nbchkr’s functionality is exposed to the user as a library.

Importing the relevant libraries:

>>> import pathlib
>>> import nbchkr.utils

Reading in the source notebook main.ipynb and removing relevant cells:

>>> nb_path = pathlib.Path("main.ipynb")
>>> nb_node = nbchkr.utils.read(nb_path=nb_path)
>>> student_nb = nbchkr.utils.remove_cells(nb_node=nb_node)

Writing the assignment notebooks assignment.ipynb:

>>> output_path = pathlib.Path("assignment.ipynb")
>>> nbchkr.utils.write(output_path=output_path, nb_node=nb_node)

Note that the nbchkr.utils.remove_cells function can take as arguments
different regex patterns and replacement strings which allows flexibility for
how to write your notebooks.

Writing a slightly different regex for solution delimiters:

>>> import re
>>> solution_regex = re.compile(r"### SOLUTION START[\s\S](.*?)[\s\S]### SOLUTION END", re.DOTALL)

Writing a different replacement text, this is what the student will see instead
of the solution:

>>> solution_repl = "# Write your solution here"

Removing the cells:

>>> student_nb = nbchkr.utils.remove_cells(nb_node=nb_node, solution_regex=solution_regex, solution_repl=solution_repl)

solve an assignment

You can solve an assignment in 1 or 2 ways:

	Using the command line tool.

	Using nbchkr as a library.

Using the command line tool

Given a source assignment main.ipynb:

$ nbchkr solve --source main.ipynb --output solution.ipynb

This creates solution.ipynb with relevant cells removed which can
then be distributed to students.

Using nbchkr as a library

All of nbchkr’s functionality is exposed to the user as a library.

Importing the relevant libraries:

>>> import pathlib
>>> import re
>>> import nbchkr.utils

Reading in the source notebook main.ipynb and removing relevant cells.
We here use a regex that matches nothing for the solutions (as we want them to
stay in place):

>>> nb_path = pathlib.Path("main.ipynb")
>>> solution_regex = re.compile('$^')
>>> nb_node = nbchkr.utils.read(nb_path=nb_path)
>>> student_nb = nbchkr.utils.remove_cells(nb_node=nb_node, solution_regex=solution_regex)

Writing the assignment notebooks assignment.ipynb:

>>> output_path = pathlib.Path("solution.ipynb")
>>> nbchkr.utils.write(output_path=output_path, nb_node=nb_node)

check a submission

You can check a submission in 2 ways:

	Using the command line tool.

	Using nbchkr as a library.

Using the command line tool

Given a source assignment main.ipynb and a submission
submitted.ipynb you can check the submission using:

$ nbchkr check --source main.ipynb --submitted submitted.ipynb --feedback-suffix -feedback.md --output data.csv

This creates submitted.ipynb-feedback.md with feedback and outputs
summary scores to data.csv.

Note that given a pattern matching a number of notebooks, for example all
notebooks in submissions/ you can check them all at once using:

$ nbchkr check --source main.ipynb --submitted "submissions/*.ipynb" --feedback-suffix -feedback.md --output data.csv

Using nbchkr as a library

All of nbchkr’s functionality is exposed to the user as a library.

Importing the relevant libraries:

>>> import pathlib
>>> import nbchkr.utils

Reading in the source notebook main.ipynb and removing relevant cells:

>>> source_nb_path = pathlib.Path("main.ipynb")
>>> source_nb_node = nbchkr.utils.read(nb_path=source_nb_path)

Reading in the submitted notebook submitted.ipynb and check that the tags
match (if they do not match the checker will still work but the results should
be confirmed manually):

>>> submitted_nb_path = pathlib.Path("submitted.ipynb")
>>> nb_node = nbchkr.utils.read(submitted_nb_path)
>>> tags_match = nbchkr.utils.check_tags_match(source_nb_node=source_nb_node, nb_node=nb_node)
>>> tags_match
True

Now we will add the checks to the submission from main.ipynb and run
them:

>>> nb_node = nbchkr.utils.add_checks(nb_node=nb_node, source_nb_node=source_nb_node)
>>> score, maximum_score, feedback_md, passed_checks = nbchkr.utils.check(nb_node=nb_node)
>>> score
10
>>> maximum_score
11
>>> feedback_md
'\n---\n\n## answer:q1\n\n### Integer answer\n\n1 / 1\n\n### Correct answer\n...'
>>> passed_checks
{'Integer answer': True, 'Correct answer': True, 'Presence of docstring': False}

Note that the nbrchkr.utils.check_tags_match,
nbchkr.utils.add_checks and nbchkr.utils.check functions can
take further arguments that allow for customisation of behaviour.

handle a submission in the wrong format

If a file is checked that is not an ipynb file then the checker will write the
following to the feedback file:

"Your notebook file was not in the correct format and could not be read"

Note than when batch checking, this will not stop the checker from checking the
other files.

contribute

Installing a development version

To install a development version of the library:

$ python setup.py develop

Run tests

To run the basic unit tests:

$ python -m pytest

To run the full set of tests with syntax highlighting, doctests and coverage:

$ python -m pytest -v --cov=nbchkr --cov-fail-under=100 --flake8 --doctest-glob='*.rst

To run static type checking:

$ python -m mypy src/

To run the doctest coverage checker:

$ python -m interrogate -e setup.py -e tets/ -M -i -v -f 100

Style formatting

To the automatic style formatter black:

$ python -m black .

To run the import sorting formatter isort:

$ python -m isort src/nbchkr/.

Build the documentation

To build the documentation:

$ cd docs
$ make html

Git branching

The most up to date branch that all new features should be branched from is
dev.

New releases are tagged.

release

The release process:

	Adjust the version number in version.py.

	Tag a new release:

git tag <release number>

	Push the new tag to github:

git push --tags

	Create a new release on github.

	Create a distribution:

python setup.py sdist bdist_wheel

	Use twine to upload to pypi:

python -m twine upload dist/*

Explanation

Contents:

	why use nbchkr?

	why use automated checking?

why use nbchkr?

The design principles of nbchkr are:

	Lightweight with few dependencies;

	Flat file outputs;

	Customisable;

	Well documented.

There are alternatives to nbchkr, the most mature of which is
nbgrader https://nbgrader.readthedocs.io which is a full course
management system. It includes the ability to send emails to students,
distribute assignments and feedback. It is a full featured class management
solution that I wholeheartedly recommend checking out in case it is the tool you
need.

why use automated checking?

In the discussion of [Schinke2014] (a review of assessment) the following
sentence stands out:

“However, underlying the less encouraging news about grades are numerous
opportunities for faculty members to make assessment and evaluation more
productive, better aligned with student learning, and less burdensome for
faculty and students.”

It is with idea in mind that automated checking of assessment should be
implemented.

Indeed in [Wilcox2015] (a reflection on an implementation of automated
checking) there are two initial questions:

	Does the automated check detract from student learning?

	Do the benefits of implementing automated checking outway the cost?

It is hoped that software similar to and like nbchkr answer the second
question.

The first question however is positively answered in a number of pieces of work
such as [Wilcox2015] itself where students reported a positive experience of
using automated checking but also benefited academically which indicates a
better overall learning process. This student satisfaction with the process is
also reported in [Saikkonen2001]

Some of the downsides of human checking are listen in [Cheang2003]:

	Difficulty of judging efficiency and correctness;

	The fact that there can be multiple approaches to a problem that would be
missed by a human checker.

	Emphasis on aesthetics. Note that given the modern emphasis on the importance
of code readability I am not convinced by this particular downside.

	Inconsistency of human checkers

	Time: the workload of checking works is huge.

This last point is often mentioned in the literature and specifically
[Schinke2014] highlight the importance of creating time and space for
meaningful feedback through self and peer evaluation.

Self evaluation as a general pedagogic strategy relates well to automated
checking as described by [Losada2010] where they prescribe giving a number of
tests to students as part of the assessment. As part of the [Losada2010] a
discussion as part of Bloom’s Taxonomy is given however this will not be
discussed here given numerous downsides to the taxonomy (see for example:
[Case2013]). [Losada2010] lists numerous advantages to automated checking:

	Fast feedback: in their case and similar to [Cheang2003], [Saikkonen2001]
and others the particular framework being described was an “online” one that
students could use to gain immediate feedback.

	Fairer grading;

	Permanent access;

	Efficiency;

	Fostering a positive attitude towards test driven development (TDD).

This last point relates to the testing practice in software engineering of
writing a test before writing the software.

Specific strategies for writing checks are described in [Saikkonen2001] and
[Wilcox2016] which give insight and guidance on writing using tests that allow
for feedback that helps students identify errors. Contrary to [Cheang2003]’s
suggestion that aesthetics having a major role in human checking being a
negative, [Wilcox2016] points out that static tools can be used to check the
code quality itself (all within the testing framework). One such example of this
is in the Tutorial where a test is included to make sure that the code
written is documented.

There are some negative aspects to automated testing another good
quote from [Schinke2014] is:

“In fact, we have presented evidence that accuracy-based grading may, in
fact demotivate students and impede learning.”

It was noted also in [Wilcox2015] that some students do feel that it the
automated checks “unnecessarily strict”.
Finally, [Wilcox2016] discusses some aspects of security and that automated
testing can be done inside of a virtual machine to avoid running of malicious
code.

These are all aspects to be considered when writing the specific checks for the
assignments and not losing sight of the end goal which is to create a positive
environment for student learning. Automated checking should not be thought of as
a solution to a problem of assessment but hopefully a tool that enables better
learning through:

	Timely and actionable feedback;

	The creation of space for productive learning activities.

Reference

Contents:

	Bibliography

	Changelog
	v0.0.7 - Add ability to handle non notebook submissions

	v0.0.6 - Improve handling of blank space

	v0.0.5 - Update changelog

	v0.0.4 - Add ability to have descriptions in feedback and create model solutions

	v0.0.3 - Minor internal changes and improvement to docs

	v0.0.2 - Minor change to contribution docs

	v0.0.1 - First release

	Source code
	add_checks()

	check()

	check_tags_match()

	get_description()

	get_score()

	get_tags()

	read()

	remove_cells()

	write()

Bibliography

This is a collection of various bibliographic items referenced in the
documentation.

[Case2013]
Case, Roland. “The Unfortuate Consequences of Bloom’s Taxonomy.” Social Education 77.4 (2013): 196-200.

[Cheang2003]
Cheang, Brenda, et al. “Automated grading of programming assignments.” Proceedings of the 11th International Conference on Computers in Education (ICCE 2003). 2003.

[Losada2010]
Losada, Isidoro Hernin, Cristóbal Pareja Flores, and J. Éngel Velizquez Iturbide. “Pedagogical use of automatic graders.” Advances in Learning Processes, InTech (2010).

[Saikkonen2001]
Saikkonen, Riku, Lauri Malmi, and Ari Korhonen. “Fully automatic assessment of programming exercises.” Proceedings of the 6th annual conference on Innovation and technology in computer science education. 2001.

[Schinke2014]
Schinske, Jeffrey, and Kimberly Tanner. “Teaching more by grading less (or differently).” CBE—Life Sciences Education 13.2 (2014): 159-166.

[Wilcox2015]
Wilcox, Chris. “The role of automation in undergraduate computer science education.” Proceedings of the 46th ACM Technical Symposium on Computer Science Education. 2015.

[Wilcox2016]
Wilcox, Chris. “Testing strategies for the automated grading of student programs.” Proceedings of the 47th ACM Technical Symposium on Computing Science Education. 2016.

Changelog

v0.0.7 - Add ability to handle non notebook submissions

2021-01-04

v0.0.6 - Improve handling of blank space

2020-12-16

v0.0.5 - Update changelog

2020-12-11

v0.0.4 - Add ability to have descriptions in feedback and create model solutions

2020-12-11

v0.0.3 - Minor internal changes and improvement to docs

Shifted to using typer for the cli.

2020-09-16

v0.0.2 - Minor change to contribution docs

2020-08-25

v0.0.1 - First release

2020-08-25

Source code

	
nbchkr.utils.add_checks(nb_node: dict, source_nb_node: dict, answer_tag_regex=None) → dict

	Given a nb_node and a source source_nb_node, add the cells in
nb_node with tags matching answer_tag_regex to source_nb_node

This is used to add a student’s answers to the source notebook.

	
nbchkr.utils.check(nb_node: dict, timeout: int = 600, score_regex_pattern=None, answer_tag_pattern=None) → Tuple[int | None, int | None, str, dict]

	Given a nb_node, it executes the notebook and keep track of the score.

This returns 4 things:

	The student score

	The total score obtainable

	Some feedback in markdown format

	A dictionary mapping check description tags to a boolean

	
nbchkr.utils.check_tags_match(source_nb_node: dict, nb_node: dict, tag_seperator: str = '|', tag_regex=None) → bool

	This checks if the count of tags that match tag_regex on each cell matches. Note that it does not
necessarily guarantee that the tags are on the same cells.

	
nbchkr.utils.get_description(cell: dict, description_regex_pattern=None, tag_seperator: str = '|') → str

	Given a cell of a notebook, return the description as defined by the
description_regex_pattern.

	
nbchkr.utils.get_score(cell: dict, score_regex_pattern=None) → int

	Given a cell of a notebook, return the score as defined by the
score_regex_pattern.

	
nbchkr.utils.get_tags(cell: dict, tag_seperator: str = '|', tag_regex=None) → str

	Given a cell of a notebook, return a string with all tags that match
tag_regex separated by |.

	
nbchkr.utils.read(nb_path: Path | str, as_version: int = 4) → dict

	Read a jupyter notebook file at nb_path.

Returns the python dict representation.

	
nbchkr.utils.remove_cells(nb_node, tags_regex_patterns_to_ignore=None, solution_regex=None, solution_repl=None)

	Given a dictionary representation of a notebook, removes:

	Cells with tags matching patterns in tags_regex_patterns_to_ignore

	Text in cells matching the solution_regex pattern.

Returns the python dict representation.

	
nbchkr.utils.write(output_path: Path, nb_node: dict)

	Write the python dict representation of a notebook to output_path.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nbchkr	

 	
 	
 nbchkr.utils	

Index

 A
 | C
 | G
 | M
 | N
 | R
 | W

A

 	
 	add_checks() (in module nbchkr.utils)

C

 	
 	check() (in module nbchkr.utils)

 	
 	check_tags_match() (in module nbchkr.utils)

G

 	
 	get_description() (in module nbchkr.utils)

 	
 	get_score() (in module nbchkr.utils)

 	get_tags() (in module nbchkr.utils)

M

 	
 	
 module

 	nbchkr.utils

N

 	
 	
 nbchkr.utils

 	module

R

 	
 	read() (in module nbchkr.utils)

 	
 	remove_cells() (in module nbchkr.utils)

W

 	
 	write() (in module nbchkr.utils)

 _static/minus.png

_static/plus.png

_static/file.png

_static/tutorial/changing_the_cell_type.png
C Ju pyter main Last Checkpoint: 10 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Hell
Code
+ x @ B 4 ¥ MR H C v Markdown Validate

Raw NBConvert

Heading

Class assignement

We will use this assignment to solidify our understanding of using Python to
carry out some numerical operations and also write functions.

Use this notebook to write your answers in the cells as instructed, do your
best not to delete any of the cells that are already there.

Question one.
Use python to obtain the remainder when dividing 21 by 5:

\\[21 \mod 5\\]

_static/tutorial/create_new_notebook.png
Rename Notebook

Enter a new notebook name:

main|

_static/tutorial/add_tags.png
: Ju pyte ' main Last Checkpoint: a few seconds ago (unsaved chan

File Edit View Insert Cell Kernel Widgets Help

+ | | x Toggle Header n B C M Code :
Toggle Toolbar
Toggle Line Numbers |

In [Cell Toolbar » None
| Edit Metadata

Raw Cell Format

Slideshow
Attachments
Tags

Create Assignment

_static/tutorial/seeing_the_answer_tag.png
In [1]:

Out[1]:

answer:q1 X

BEGIN SOLUTION

Add tag

21 % 5

END SOLUTION

1

_static/tutorial/seeing_the_check_tags.png
In [2]: score:1 % Add tag

gql_answer = _
feedback_text = "Your operation did not return an integer which is expected"
assert type(ql_answer) is int, feedback_text

In [3]: score:3 % | description:correct-answer % Add tag

feedback_text = "The expected answer is 1 because 21 =5 x 3 + 1"
assert ql_answer == 1, feedback_text

_images/seeing_the_rendered_cell.png
Add tag

Class assignment

We will use this assignment to solidify our understanding of using Python to carry out some numerical operations and also write functions.

Use this notebook to write your answers in the cells as instructed, do your best not to delete any of the cells that are already there.

Question one.

Use python to obtain the remainder when dividing 21 by 5:

21 mod 5

_images/seeing_the_tags_bar.png

_images/create_new_notebook.png
Rename Notebook

Enter a new notebook name:

main|

_images/seeing_the_answer_tag.png
In [1]:

Out[1]:

answer:q1 X

BEGIN SOLUTION

Add tag

21 % 5

END SOLUTION

1

_static/tutorial/seeing_the_rendered_cell.png
Add tag

Class assignment

We will use this assignment to solidify our understanding of using Python to carry out some numerical operations and also write functions.

Use this notebook to write your answers in the cells as instructed, do your best not to delete any of the cells that are already there.

Question one.

Use python to obtain the remainder when dividing 21 by 5:

21 mod 5

nav.xhtml

 Table of Contents

 		
 Welcome to nbchkr’s documentation!

 		
 Tutorial

 		
 Installing nbchkr

 		
 Writing an assignment

 		
 Initial setup

 		
 Writing text for a question

 		
 Writing the answer to a question

 		
 Writing checks for the answer

 		
 Writing another question

 		
 Writing the answer

 		
 Including checks

 		
 Releasing an assignment

 		
 Releasing solutions

 		
 Checking student assignments and generating feedback

 		
 How to:

 		
 install

 		
 write a source assignment

 		
 Write a question

 		
 Write an answer

 		
 Write a check

 		
 release an assignment

 		
 Using the command line tool

 		
 Using nbchkr as a library

 		
 solve an assignment

 		
 Using the command line tool

 		
 Using nbchkr as a library

 		
 check a submission

 		
 Using the command line tool

 		
 Using nbchkr as a library

 		
 handle a submission in the wrong format

 		
 contribute

 		
 Installing a development version

 		
 Run tests

 		
 Style formatting

 		
 Build the documentation

 		
 Git branching

 		
 release

 		
 Explanation

 		
 why use nbchkr?

 		
 why use automated checking?

 		
 Reference

 		
 Bibliography

 		
 Changelog

 		
 v0.0.7 - Add ability to handle non notebook submissions

 		
 v0.0.6 - Improve handling of blank space

 		
 v0.0.5 - Update changelog

 		
 v0.0.4 - Add ability to have descriptions in feedback and create model solutions

 		
 v0.0.3 - Minor internal changes and improvement to docs

 		
 v0.0.2 - Minor change to contribution docs

 		
 v0.0.1 - First release

 		
 Source code

 		
 add_checks()

 		
 check()

 		
 check_tags_match()

 		
 get_description()

 		
 get_score()

 		
 get_tags()

 		
 read()

 		
 remove_cells()

 		
 write()

_images/add_tags.png
: Ju pyte ' main Last Checkpoint: a few seconds ago (unsaved chan

File Edit View Insert Cell Kernel Widgets Help

+ | | x Toggle Header n B C M Code :
Toggle Toolbar
Toggle Line Numbers |

In [Cell Toolbar » None
| Edit Metadata

Raw Cell Format

Slideshow
Attachments
Tags

Create Assignment

_images/changing_the_cell_type.png
C Ju pyter main Last Checkpoint: 10 minutes ago (unsaved changes)

File Edit View Insert Cell Kernel Widgets Hell
Code
+ x @ B 4 ¥ MR H C v Markdown Validate

Raw NBConvert

Heading

Class assignement

We will use this assignment to solidify our understanding of using Python to
carry out some numerical operations and also write functions.

Use this notebook to write your answers in the cells as instructed, do your
best not to delete any of the cells that are already there.

Question one.
Use python to obtain the remainder when dividing 21 by 5:

\\[21 \mod 5\\]

_static/tutorial/seeing_the_tags_bar.png

